

G7 Transport Academic Workshop

Improving urban resilience

A conceptual framework, opportunistic data and AI advances

Prof. Dr. Constantinos Antoniou

Technical University of Munich

Wednesday, 10th April 2024 - Aula Magna "Carassa e Dadda" Politecnico di Milano, Bovisa Campus, Milan (Italy)

Based on the DARUMA project (2021-2024)

- Japan: Japan Science and Technology Agency (JST)
- Germany: Federal Ministry of Education and Research (BMBF)
- Spain: Agencia Estatal de Investigación (AEI) State Research Agency
- Hungary: National Research, Development and Innovation Office (NKFIH)

A Daruma doll is a Japanese traditional doll, symbol of resilience

Based on the DARUMA project (2021-2024)

- Japan: Japan Science and Technology Agency (JST)
- Germany: Federal Ministry of Education and Research (BMBF)
- Spain: Agencia Estatal de Investigación (AEI) State Research Agency
- Hungary: National Research, Development and Innovation Office (NKFIH)

Aim: Help cities better support the impact of events and crisis, and "return to normality" as fast as possible

A Daruma doll is a Japanese traditional doll, symbol of resilience

Components

- Conceptual framework
- (Mostly) opportunistic data collection
 - Google Popular Times (GPT)
 - Social Media data (Twitter/X, Facebook, ...)
 - Floating car data
 - Mobile phone data
- Artificial Intelligence techniques
 - Transfer learning
 - Sentiment analysis

• ..

Components

- Conceptual framework Understand
- (Mostly) opportunistic data collection Measure
 - Google Popular Times (GPT)
 - Social Media data (Twitter/X, Facebook, ...)
 - Floating car data
 - Mobile phone data
- Artificial Intelligence techniques Improve
 - Transfer learning
 - Sentiment analysis

• ..

Main properties and definitions of resilience

Conceptual framework

Short-term policies - e.g., emergency responses in Table 4	Long-term policies - e.g., S(E1), S(E2), S(E3), S(E4), S(E5)
Transportation infrastrcuture	Transport services under emergency
- Network topology - Facilities - System reliability - Parkings - etc.	 Service availability Vehicle cleanliness PT service frequency Facility accessibility etc.
Mobilit - Regular intra-city mob - Regular inter-city mob - Irregular (e.g., due to concerts) mobility	y categories ^{bility} bility special events like
Resilien	ce indicators
 Infrastructure function (e.g., travel time) Public health (e.g., number of infections) Economy (e.g., unemployment rate) 	

Example: Pandemic containment policies (transport-related)

ID	Strategy	Effect
S1	Cancellation of international passenger flights	E1
S2	Reduction of intercity buses, trains, high-speed trains, planes, etc.	E1
S 3	Cancellation of intra-city public transport operation	E2
S4	Publishing infection risk warnings, appeal citizens not to make non-essential trips	E2, E5
S5	Posting trajectories of the infected	E3, E5
S 6	Daily disinfection of public transport vehicles	E4
S 7	Wearing a mask and maintaining social distancing in public transport vehicles	E4
S 8	Scale management of taxis	E2
S 9	Stay-at-home orders	E2, E3
S10	Ride-sharing companies laid off management staff and froze driver sign-ups	E2
S11	Using taxis to provide point-to-point goods delivery to residents	E2, E3
S12	Offering free usage of city bicycles	E3
S13	Back-door-only loading policy	E3, E4
S14	Opening specific lanes to bicycle users	E3
S15	Improving the public transport information system	E3, E5

Policies categorisation and contribution to resilience properties

Key (Numbers in the circles represent modelling task):
1: Trip Generation, 2: Accessibility, 3: Trip Distribution/ OD flows,
4: Destination Choice/ Activity Spaces/ Trip Purpose,
5: Departure Time Choice, 6: Mode Detection, 7: Route Choice,
8: Network Modelling, 9: Traffic Speed, 10: Travel-time,

Mahajan et al. (2021b)

9

POLITECNICO MILANO 1863

An example: Google Popular Times (incl. live)

Budapest, Hungary

Madrid metropolitan area, Spain

Illustration and validation of GPT (Kyoto)

Within-day dynamics

<u>Time series trends and data validation (R²=0.82)</u>

12

Vongvanich et al. (2023)

Activity split and temporal distribution from geo-tagged social data

The parent POI categories of Foursquare are used as the activity categories

- Arts and Entertainment
- Community and Government (including temple and shrine, which are also landmarks and outdoors)
- Dining and Drinking
- Landmarks and Outdoors
- Retail
- Travel and Transportation

Bi et al. (2023)

13

POLITECNICC

City mood from aggregated tweet sentiments

- Collected Tweets with keywords "Kyoto" or "COVID" during COVID period
- Text mining of moods associated with Tweets
- Time series analysis of sentiments: Correlation to two weeks ahead visits to Kyoto
- Tweet sentiment as one travel demand forecasting indicator

CMR: Google Community Mobility Report (% change from pre-Covid data)

Artificial intelligence techniques

- Data sparsity and insufficiency
 - Tensor-based data imputation (Lyu et al., 2024)
 - Data fusion (Mahajan et al., 2021b)
- Pattern recognition
 - Spatial temporal clustering (Santiago-Iglesias et al., 2023)
- Transfer learning + neural networks
 - Resilience pattern prediction (Yang et al., 2024)

MILANO 1863

An application of transfer learning

Take aways

- A comprehensive resilience modeling framework
- Opportunistic data have limitations, but also potential
 - Capturing changes in activities (incl. in real-time)
 - Impact of Covid (Mahajan et al., 2021a)
 - Filomena storm (Madrid, Santiago-Iglesias et al., 2023)
 - Impact of 9 Euro ticket (Lu et al., 2024a)
 - Capturing "city-mood"
- Capturing the response of the public is essential

Take aways

- A comprehensive resilience modeling framework
- Opportunistic data have limitations, but also potential
 - Capturing changes in activities (incl. in real-time)
 - Impact of Covid (Mahajan et al., 2021a)
 - Filomena storm (Madrid, Santiago-Iglesias et al., 2023)
 - Impact of 9 Euro ticket (Lu et al., 2024a)
 - Capturing "city-mood"
- Capturing the response of the public is essential

References

- Bi, M., Sun, W., Schmöcker, J.D., Moya-Gómez, B, & Ma Y. (2023) Using geo-tagged tweets to infer the temporal and spatial distribution of activity participation. EASTS 2023, Shah Alam, Malaysia.
- Lu, Q. L., Mahajan, V., Lyu, C., & Antoniou, C. (2024a). Analyzing the impact of fare-free public transport policies on crowding patterns at stations using crowdsensing data. Transportation Research Part A: Policy and Practice, 179, 103944.
- Lu, Q. L., Sun, W., Dai, J., Schmöcker, J. D., & Antoniou, C. (2024b). Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes. Reliability Engineering & System Safety, 110095.
- Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., and Antoniou, C. (2024c). Framework for evaluating urban resilience to pandemics: analysis of transport-related containment policies. Research Handbook on Transport and COVID-19. (in press)
- Lyu, C., Lu, Q. L., Wu, X., & Antoniou, C. (2024). Tucker factorization-based tensor completion for robust traffic data imputation. Transportation Research Part C: Emerging Technologies, 160, 104502.
- Mahajan, V., Cantelmo, G. & Antoniou, C. (2021a) Explaining demand patterns during COVID-19 using opportunistic data: a case study of the city of Munich. Eur. Transp. Res. Rev. 13(1), 1-14. https://doi.org/10.1186/s12544-021-00485-3
- Mahajan, V., N. Kuehnel, A. Intzevidou, G. Cantelmo, R. Moeckel & C. Antoniou (2021b): Data to the people: a review of public and proprietary data for transport models, Transport Reviews, 42 (4), 415-440. DOI: 10.1080/01441647.2021.1977414
- Santiago-Iglesias, E., Carpio-Pinedo, J., Sun, W., & García-Palomares, J. C. (2023). Frozen city: Analysing the disruption and resilience of urban activities during a heavy snowfall event using Google Popular Times. Urban Climate, 51, 101644.
- Sun, W., Kobayashi, H., Nakao, S., & Schmöcker, J. D. (2023). On the Relationship Between Crowdsourced Sentiments and Mobility Trends During COVID-19: A Case Study of Kyoto. Data Science for Transportation, 5(3), 17.
- Vongvanich, T., Sun, W., & Schmöcker, J. D. (2023). Explaining and predicting station demand patterns using google popular times data. Data Science for Transportation, 5(2), 10.
- Yang, N., Lu, Q.-L., Lyu, C., and Antoniou, C. (2024). Transfer Learning for Transportation Demand Resilience Patterns Prediction Using Floating Car Data. Transportation Research Record. (in press)

Improving urban resilience

A conceptual framework, opportunistic data and AI advances

Prof. Dr. Constantinos Antoniou

Technical University of Munich

https://www.mos.ed.tum.de/vvs/ c.antoniou@tum.de

