

Decision-Making Trade-Offs for Resilient Transport Systems

Prof. Kay Mitusch

Network Economics, ECON Institute, Karlsruhe Institute of Technology (KIT)

INSTITUT FÜR VOLKSWIRTSCHAFTSLEHRE (ECON), NETZWERKÖKONOMIE

Agenda

- Part 1: Ex-ante decisions on expected technological disruptions concerning unexpected and unpredictable events
- Part 2: Ex-post decisions in case of an extreme event

Expected technological disruption 1: Total electrification of society

- For climate reasons, transport will be predominantly electrical in the future: railways, cars, trucks, buses
- Also telecommunications, household heating, and industry will be electrified
- Therefore, the resilience of the electrical power system ranks first!
 - From "n-1" to "n-2" resilience of power systems
 - In countries like Germany, preserve parts of the **natural gas infrastructures as a** backup for the electrical power system: Gas power plants, long distance gas network, gas storage facilities
- In addition, preserve a portion of the **gasoline infrastructure** as resilience backup for heavy vehicles (like construction and military vehicles)

Decision making tradeoff concerning total electrification of society

- Don't go too lean into energy transition and future electric power system
- Spend some more money on resilience, i. e. redundancies in the power system
- Also keep some parts of the inherited technologies and infrastructures like gas or gasoline as a backup against extreme events (even if fossile based and almost not used in normal circumstances)

Expected technological disruption 2: Total digitalization of society

- Resilience of digital systems is vital
- Will a vital company of a non-digital domain (like a railway undertaking or a railway infrastructure manager) stay resilient against cyber attacks?
- Can it do so in an economically feasible way?
- As we do not know how vulnerable digital systems and applications will turn out to be, we have to take care:

Decision-Making Trade-Offs for Resilient Transport Systems

Besides "n+X": "every crises can be managed by intelligent systems"
 beware of "n-n = 0": "intelligent internet-based systems may break down completely"

Decision making tradeoff concerning total digitalization of society

- Beware complete lock-in into digital systems
- Retain the ability to fall back to simple, locally controlled, non-digital modes:
 - Government and public administrations
 - Electric power system and its resilience backup
 - Basic traffic management (e. g. backup mode for light-signal systems)
- As automated driving is developing: A substantial portion of automated road vehicles must still be driver-controllable without recourse to network services
 - Car-owners should make "emergency driving licences" in the future

Agenda

- Part 1: Ex-ante decisions on expected technological disruptions concerning unexpected and unpredictable events
- Part 2: Ex-post decisions in case of an extreme event

Resilience of road traffic ranks first

- Good news: Road traffic is (currently) very resilient
 - Many independent vehicles that are freely maneuverable by their drivers

- A dense road network that provides many alternative and substitute routes from A to B
 - → The road network is a safety network
- Main danger during an extreme event: Mass evacuation, bottlenecks and hyper-congestion, deadlocks
- Pivotal: Adequate information of the population

Decision making tradeoff concerning road traffic information

- Pivotal: Adequate information of the population
 - Crisis management by detailed information ("go there, use this road at this time") if such information is reliable
 - But is such detailed information reliable? Real-time realistic assessment by the authorities about the reliability of detailed information
 - If unreliable: Fallback to general information
 - Withhold unreliable detailed information
 - Warn about unreliability of detailed information from other sources

Decision-Making Trade-Offs for Resilient Transport Systems

Give general information on situation and behavior ("stay home and wait for more information, beware traffic jams")

Tradeoff between smooth everyday functioning of systems and readiness for extreme events

- Societies, people and governments, should be prepared and trained for "moments of surprise"
- Luckily, training is already under way:
 - Financial crisis of 2008
 - Covid
 - Ukraine war
 - Extreme weather events
 - Strikes
 - ...

Thanks for your attention

Prof. Dr. KAY MITUSCH

Karlsruher Institut für Technologie (KIT)
Institut für Volkswirtschaftslehre (ECON)
Netzwerkökonomie

mitusch@kit.edu

