

G7 Transport Academic Workshop

Behavioral Models and Microsimulation for Passenger and Freight Resiliency Analyses

Moshe Ben-Akiva MIT

Wednesday, 10th April 2024 - Aula Magna "Carassa e Dadda" Politecnico di Milano, Bovisa Campus, Milan (Italy)

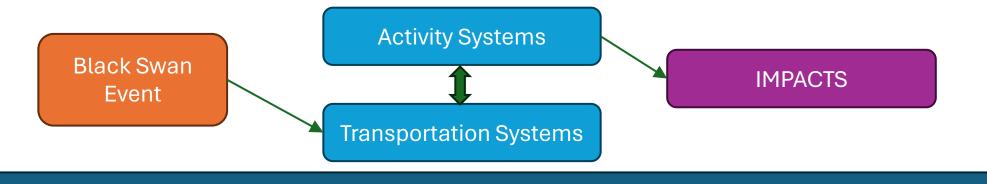
Outline

- Black Swan Events (BSE)
- Impacts of BSE
- Simulation Laboratory
- Application: Transit Disruptions in Singapore
- Conclusion

Black Swan Events (BSE)

- Unpredictable events with severe consequences for many
 - Pandemic
 - Extreme weather
 - Infrastructure disruption
 - Strikes/labor disputes
 - Cyberattacks
 - Terrorism/war

How to prepare for a diverse array of disruptions?



BSE and Transportation

How do these events affect transport?

- Supply side \rightarrow connectivity, capacity, recovery time
- Demand side \rightarrow essential human needs
 - Physiological (e.g., food, water, shelter, clothing)
 - Safety & security (e.g. health services, personal security, income/employment)

Evaluation of preparedness measures should be based on the demand!

Preparedness Measures

Measures are both by design and intervention

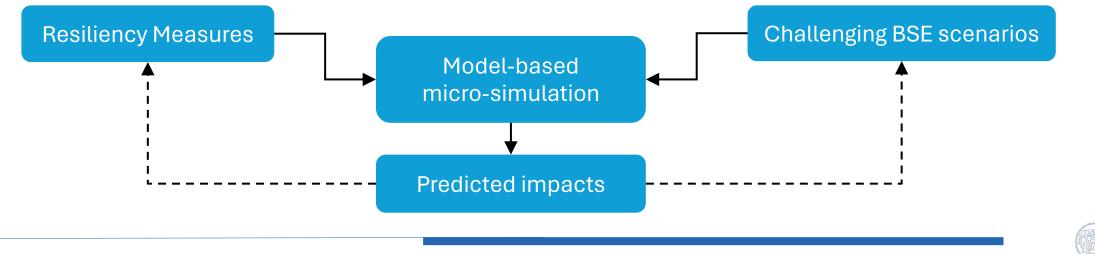
Supply-side

- Redundancy
- Diversity
- Modularity of the transportation system
- Driving restrictions
- etc.

Demand-side

- Pre-positioning of emergency supplies
- Telecom activities (remote work, telemed)
- etc.

Resiliency is a 'system of systems' problem



Impact Prediction

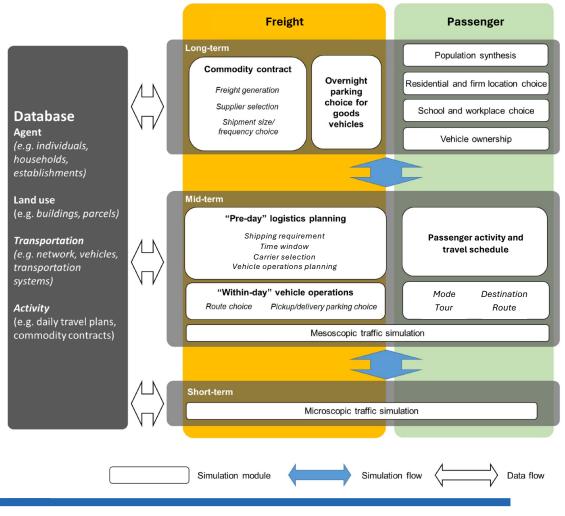
- We observe the behavior of *existing* transport *users*, however...
 - the impacts of a specific BSE on specific users and specific human needs are by definition unobservable
- Thus, prediction of impacts cannot be exclusively data-driven but requires **modeling** and **simulation experiments**

Simulation Laboratory: SimMobility

- **SimMobility**: an integrated simulation platform for analyzing future mobility scenarios
 - Agent-based (individual and business establishment)
 - Activity-based (derived demand)
 - Multi-modal
 - Multi-sectoral (passenger and freight)
 - Multiple spatial-temporal scales
 - Fully integrated and modular

SimMobility Structure

Long-Term


 Month-to-month and year-toyear behavioral dynamics

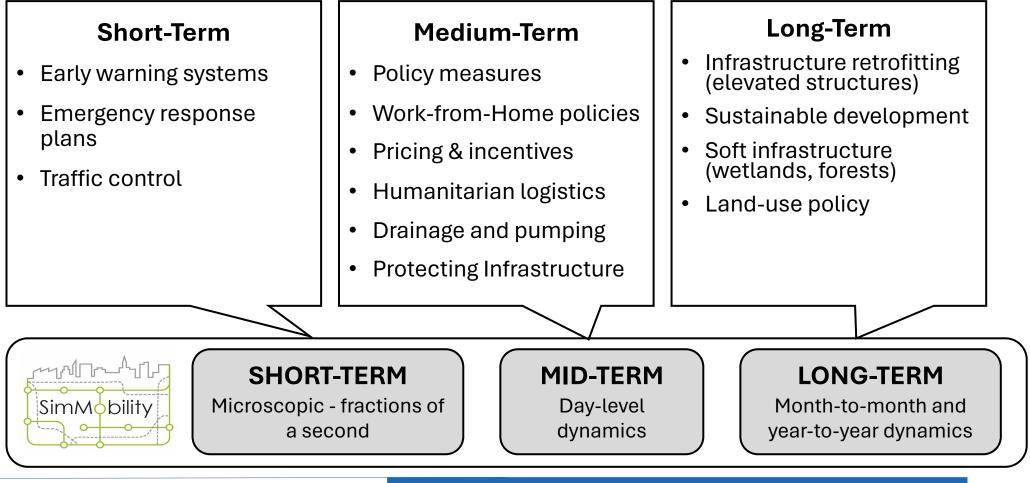
Mid-Term

 Day-level dynamics of transportation demand and supply for passenger and goods

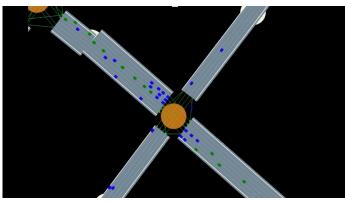
Short-Term

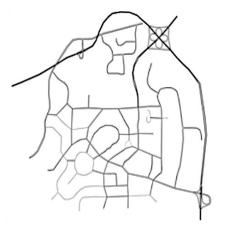
 Fractions of a second traffic dynamics

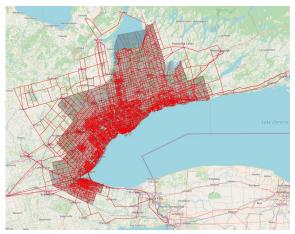
Multi-Modal and Multi-Agent


- Demand
 - Individuals (including drivers)
 - Households
 - Establishments/Firm
- Supply
 - Transit operators
 - Fleet operators/managers (incl. on-demand services, taxis, freight carriers)
 - Network operators (incl. information providers)
 - Real-estate developers
 - Infrastructure (incl. traffic signals, loop detectors)

Multiple Temporal Scales




Multiple Spatial Scales


Lane Level

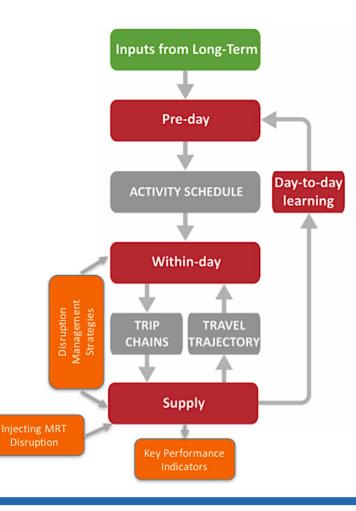
Network Level

A Small Network A toy city of 13 km x 11.5 km, 254 links

A Large Network Greater Toronto and Hamilton Area, 56.6 K links

SimMobility Applications

- Automated Mobility-on-Demand
- Sustainability incentives
- Transit disruptions
- Transit pricing
- Overnight freight vehicle parking
- Freight consolidation centers
- Night/Off-peak deliveries
- Route restrictions
- Freight-on-Demand
- Congestion pricing
- Urban air mobility
- Mobility as a Service
- Post-pandemic changes in travel and activities



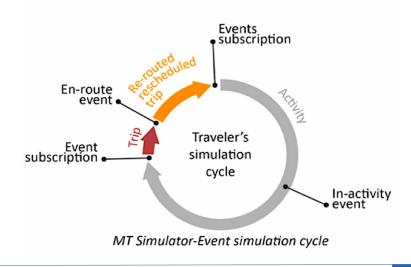
Application: Transit Disruptions in Singapore

SimMobility Mid-Term

Simulates daily travel at household and individual levels

- Activity-based demand with dynamic multi-modal assignment
- Three components:
 - Pre-day
 - Within-day
 - Supply

Adnan, M., Pereira, F. C., Azevedo, C. L., Basak, K., Koh, K., Loganathan, H., Peng, Z. H., & Ben-Akiva, M. (2016, November 30). Evaluating Disruption Management Strategies in rail transit using SIMMOBILITY mid-term Simulator: A study of singapore MRT North-East Line. Transportation Research Board 96th Annual Meeting. https://trid.trb.org/View/1439637



Application: Transit Disruptions in Singapore (2)

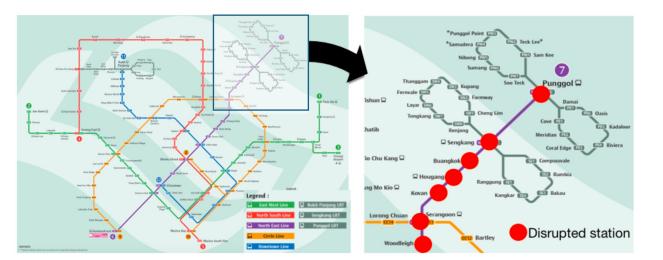
Publish/subscribe mechanism

Demand agent:

- Subscribe to events before starting trip (e.g., excessive delay, disruption, household interactions)
- After revising choice, changes in trip or activity are executed

Supply agent:

- Station agent: manages stations, transits information to passengers and train drivers
- Train controller: in charge of movement of the vehicles and transmits to train scheduler

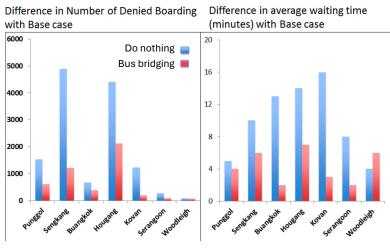


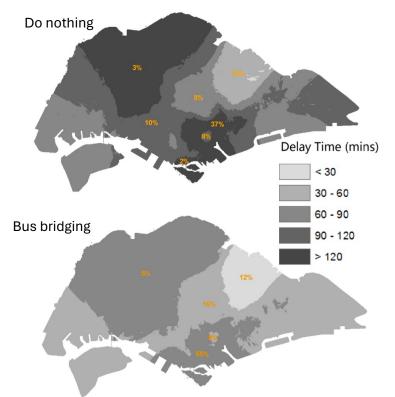
Application: Transit Disruptions in Singapore (3)

Experiment design

- June 19, 2013 from 18:15-20:35: train stalled and caused disruption
- Simulate the impact of this historical event on peak hours (8 – 10 AM)
- Scenarios:
 - No disruption
 - Disruption with no extra service
 - Disruption with shuttle service: bus bridging between every two MRT connected stations among the disrupted stations

Singapore Mass-Rapid Transit Stations and Disrupted Stations




Application: Transit Disruptions in Singapore (4)

<u>Results</u>

- Bus bridging substantially reduces disruption delays
- Area most affected by the disruption is the central business district

Disruption delays

Spatial distribution of disruption delays across SG, by trip destination

*Map percentages: % of trips (that start or cross the MRT disrupted line) that end in that area, as an indicator of their relative importance.

Conclusion

- Resiliency is a system of systems problem
- Resiliency measures should be policy pathways
- Resiliency planning must involve search over carefully defined space of challenging scenarios
- Evaluation of investment priorities must depend on the demand for essential services
- Impact prediction requires a multi-agent, multi-modal and multisectoral model-based simulation laboratory

Thank you!

For additional information, see https://www.its.mit.edu/

Transportation Complexity

- Multi-modal integration
 - Private and public
 - Passenger and freight
 - Road, rail, water and air networks
- Varied temporal scales
 - Short-term (second)
 - Mid-term (day)
 - Long-term (month to year)
- Diverse geographical scales
 - Urban
 - Regional
 - National

How to plan for multi-layer complexity?

